6.3A Using Graphs to Find Solutions of Cubic Equations

1. Use the graph to find the zeros of each function.

a)

Real zeros:

Factor(s) that create the zeros:

Possible equation of the curve to the left:

$$y = \chi^3 + 8\chi^2 - 23\chi - 33$$

b)

Real zeros:

Factor(s) that create the zeros:

Possible equation of the curve to the left:

$$y = -X^3 - 4x^2 + 3x + 18$$

c)

Real zeros:

$$x = -7, -2, 1$$

Factor(s) that create the zeros:

$$(x+7)(x+2)(x-1)$$

Possible equation of the curve to the left:

$$y = x^3 + 8x^2 + 5x - 14$$

6.3A Using Graphs to Find Solutions of Cubic Equations

2. Using a graphing utility, use the table of values and/or the graph to find the x-intercepts. If necessary, round your answers to the nearest thousandth.

a)
$$y = x^3 - 8x^2 + 19x - 12$$

c)
$$g(x) = x^3 - 14x^2 + 47x - 18$$

 $(0, 438, 0)$
 $(4, 560, 0)$
 $(9, 0)$

b)
$$y = x^3 + 2x^2 - 12x + 10$$

d)
$$h(x) = x^3 + x^2 + 2x + 24$$

3. Using a graphing utility, use the table of values and/or the graph to find the solutions to the equation f(x) = 0.

a)
$$f(x) = 3x^3 - 7x^2 + 8x - 2$$

b)
$$f(x) = -4x^3 - 7x^2 + 4x + 3$$

 $x = -3.059, -0.469, \sim 0.777$

c)
$$f(x) = -x^3 + 2x^2 + 5x - 6$$

 $\chi = -2$, $\int_{3}^{6} o^{-3} dx$

d)
$$f(x) = x^3 - 3x^2 + 4$$

4. You are designing a swimming pool with a volume of 4800ft³. The width of the pool should be 7 feet more than the depth, and the length should be 32 more feet than the depth. What should the dimensions of the pool be? (draw a sketch of the situation)

$$x(x+7)(x+32) = 4800 x(x^3+39x+224) x^3+39x^2+224x-4800=0$$

6.3

6.3B Finding Real Solutions of Polynomial Equations Graphically

#2-4: Find the solution for each problem. Verify that each answer truly is a solution.

$$2. \quad x^3 + 3x^2 - x - 8 = -5$$

Proposed Solution(s): X= -3, 1,

Verify your solution(s): $(-3)^{3}+3(-3)^{2}-(-3)-8=$ -27+3(9)+3-8= -27+37+3-8=-5 $(-1)^{3}+3(-1)^{3}-(-1)-8=-5$ $(-1)^{3}+3(1)^{2}-(1)-8=-5$ $(1)^{3}+3(1)^{2}-(1)-8=-5$

3.
$$2x^3 + 3x^2 - 18x - 20 = 7$$

Proposed Solution(s): X=-3, -1.5, 3

Verify your solution(s): $2(-3)^{3} + 3(-3)^{2} - 18(-3) - 20^{2}$ $2(-17) + 3(9) + 59 - 20^{2}$ $-59 + 27 + 59 - 20^{2} = 7$ $2(-1.5)^{3} + 3(-1.5)^{2} - 18(-1.5) - 20^{2} = 7$ $-6.75 + 6.75 + 27 - 20^{2} = 7$ $2(3)^{3} + 3(3)^{2} - 18(3) - 20^{2} = 7$ $59 + 27 - 59 - 20^{2} = 7$

Proposed Solution(s): X=>

✓ Verify your solution(s):

$$3(2)^{3} - 2(2)^{3} - 3(2) + \lambda = 3(8) - 3(4) - 6 + \lambda = 44 - 8 - 6 + \lambda = 12$$

6.3B Finding Real Solutions of Polynomial Equations Graphically

6. Find the solution(s) to each equation by graphing.

a)
$$x^4 - x^3 + 6.5x^2 + 13x - 8 = 20$$

 $\chi = -2.067$ or 1.284

c)
$$\frac{1}{2}x^4 + x^3 - 5x^2 + 3x - 2 = -2$$

 $\chi = -4.511, 0, 0.759, 1.753$

b)
$$x^5 - x^4 + x^3 - 2x^2 - 11x + 12 = 10$$

d)
$$(x+1)(x+4)(x-7)(x+6) = 25$$

 $\chi = -6.169, -3.623, -1.230, 7.022$

7. Considering the general shape of a cubic function, how many solutions can a cubic equation have? Explain your answer clearly and give an example of each.

- 8. The average amount of bananas (in pounds) eaten per person each year in the United States from 1995 to 2000 can be modeled by $f(x) = 0.298x^3 2.73x^2 + 7.05x + 8.45$ where x is the number of years since 1995.
 - a) Graph the function using a graphing calculator and sketch the graph.

In the year 1996 (1.7 years after 1995) (1995)

